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Abstract

Although it is readily recognized that there is a need for ground

truth to provide adequate guidance for remote sensing data interpretation, it

is also noted that, in terms of radar remote sensing, this ground truth is

often inadequate. Because radar "views the world" at relatively long wave-

lengths which have some penetration capability but also are affected by the

electrical and physical properties of the surface upon which they are

impinging, it is considered necessary to make basic electrical and physical

measurements of this surface and to some depth below it. This paper presents

a brief outline of such a ground-truth scheme, specifically, the measurement

of the dielectric constant. Two portable instruments were designed specifically

for this purpose; these are (I) a Q-meter for measurement of dielectric constant

and loss tangent and (2) an instrument to measure electrical properties of the

two operating frequencies of our imaging radar. Although extensive data are

lacking, several general cases of radar-earth surface and interaction are

described; also, examples of radar imagery and some data on ice and snow

are presented. The paper concludes that the next logical step is to begin

to quantify the radar ground truth in preparation for machine interpretation

and automatic data processing of the radar imagery.
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Introduction

One of the prime requirements for proper utilization and interpretation

of remotely-sensed data, that is, the conversion of raw data into useful and

usable information is the collection of ground-truth data. The direct

relationship between what is seen visually (but not necessarily perceived)

and that collected by panchromatic photography is obvious. A difficulty

in the remote sensing field is often the change in perspective of the two views

(ground truth vs. remote sensing). With the longer wavelengths of thermal

infrared, it is often difficult to relate the two views.. Our eyes observe

one aspect of the scene (i.e., the visible) but the remote sensor detects

another (e.g., heat). Small and portable instruments are available to aid us

in the collection of thermal data at selected sites (e.g., thermal radiometers,

thermometers). At even longer wavelenths, the problems of relating the visible

scene and that sensed by the remote-sensing apparatus becomes increasingly

difficult, and, at the radar wavelengths of concern in this paper (3 and 20 cm),

the relationship is not at all obvious. In addition, because persons attempting

to interpret radar imagery and those providing the ground-truth information are

often from entirely different backgrounds and training, it is of pressing

importance that we proceed to quantify both the ground truth and the remotely-

sensed data. Only after quantification will we be able to successfully

store, retrive, and statistically analyze the data and thus properly attack

the problem of environmental monitoring and measurement using airborne radars.

The problem is not only the quantification of both types of data but-also

the need to make these data collections as simultaneously as possible. If 1

the concern were only for the size, shape, and relative location of buildings,

forests, or highways, it would be possible to do the ground truth measurements

at any time within several days (or even months) of the remotely-sensed data

collection. Conversely, when dealing with features which are more unstable and
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ephemeral, it is necessary to make the time lag between the two data col-

lections as short as possible.

Finally, although it is often possible to remove portions of the scene

from their natural locations and study them at the laboratory bench, this may

subject the sample to changes during collection, storage, and transportation.

For example, the collection of a soil sample for later testing can lead to

greatly altered structure, porosity, permeability, and moisture conditions,

whereas the chemical constituents and, in general, the grain-sized distri-

bution of the sample will have remained unaltered. In the case of snow, time

along is;sufficient to alter the physical properties [I]. Thus, the nature of

the study determines, to a large degree, the nature of the applicable ground

truth which should be used in support of the remote-sensing operation. The

organization and conduct of the ground-truth portion of a complete remote

sensing study are discussed in several recent papers [2,3].

Numerous papers concerning the interpretation of radar imagery and the

nature of radar backscatter from the ground are available [e.g., 4,5]. There

is no need to reiterate these at length. However, it is instructive to simply

present the radar equation [6] to illustrate the nature of the parameters

affecting the backscatter or reflection of radar waves.

Pt G2 2
5- G X .

(41)
3
R
4

in which: S = received power (i.e., backscatter)

Pt= transmitted power

G = antenna gain

? = wavelength of emitted EM wave

r= echoing (scattering) cross section

R = range

Several of these parameters (Pt' G, A) are functions of the radar
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instrument design and operation, one (R) is concerned with the relative

location of the scene to the radar antenna, and the other (a) is a function

of the nature of the target. Basically, the scattering cross-section. , is

determed by:

(a) the roughness of the surface relative to .

(b) the electrical properties of the material in the scene

(c) the roughness of any subsurface layers prior to which the

attenuation is insignificant [7].

Many studies have been conducted in which both theoretical and

empirical measurements of the scattering cross-section are considered

[e.g., 8]. However, there have been few attempts to relate measurements-of the

surface electrical properties (specifically the dielectric constant) to the

radar images.

An example of the type of feature which we-are attempting to ground

truth and image is given in Figure I. Figure la, illustrating ice in Lake

superior, clearly shows the open water and ice floes. Figure Ib, an enlarge-

ment of a portion of Figure la, indicates,. in addition, a series of tonal

variations on one ice floe. The cause of these variations is unknown because

ground truth is lacking and because the panchromatic photography showed a

continuous white with no detectable variations in tonal

signature across this floe. It is suggested that these variations are old

crusted snow surfaces, now presumably buried by more recent drifting and

falling snow. Thus, the variations noted on the radar images probably reflect
j

variations in both density and electrical properties throughout the snow

drifts. A complete report on this particular radar project is available

[9]. It is also hypothesized that, given the proper conditions, radar could

detect moisture changes in snow cover; should this prove correct, it would be

of considerable importance in forecasting runoff from hydrologic basins having

significant snow cover during hte late winter and early spring period. It has
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been suggested C10] that radars (in this case, K-band) can detect changes in

soil moisture over an area; it is also recognized that snowfields can be

detected on K-band radar imagery.[ll].. The next logicalstep; it would appear,

is to approach the question of quantification of both the ground truth and

the radar image in order to prepare these data for machine analysis.

Review of Work

Most active microwave imaging systems that have been developed and flown

are designed to operate at a single frequency, utilizing only the bandwidth

necessary to realize the range resolution required. These radars have been

used for a wide variety of applications, including military uses, cartography,

and a variety of earth science studies. The literature contains many

applications, both real and potential. For example, uses for radar imagery

have been defined for cartography [12,13], local geology C14,15], geomorphology

[16], and for ice studies [17,18]. Relatively complete bibliographies

listing numerous geoscience applications of radar are available [e.g., 19].

Multi-parameter radar systems have been used to obtain a measure of

the cross-polarization (i.e,, dipolarization) ratio of the back-scattered

signal. Because this ratio is strongly dependent upon the electrical proper-

ties of the scene [20], studies and experiments have been conducted attempting

to use this ratio to determine additional information about the scattering

surface. Such imagery (of the Pisgah Crater, CA. region) has been obtained

and studied at various polarizations [21]. Geologic studies comparing optical

and multi-polarization radar imagery showing such features as faults, frac-

tures, and lineaments are also available [22,23]. Y

Very interesting experiments have also been conducted using the cross-

polarization ratio obtained from radar backscatter from the moon [24]. ' These

experiments provide a measure of the cross-polarization ratio (Q) as a function

of the incident angle (9i). The resulting curve (Q vs. 9.) is a function of
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thedielectric constant of the scattering surface [25]. Estimates have been

made of the dielectric consant of the surface of the moon using such data.

The lunar radar experiment does not result in a microwave "image" such

as we are planning to utilize, but it is clear that the implementation and

results are applicable. This is also true of the work reported by Brown [26]

on an experiment designed to study the-use of microwave backscattering to

determine electrical properties of the earth's surface. The work of Lundien

C27] and Dickey, et al. [28] is also of importance at this juncture. In both

cases, the techniques and results are applicable to our efforts.

Multi-wavelength radar systems have also been used to provide near-

simultaneous images from which a measure of the roughness of the scattering

surface can be inferred. For example, the U.S. Navy and U.S. Coast Guard

have conducted experiments using a four-frquency radar system to identify

areas of varying sea surface roughness [29,30].

It is clear from a consideration of the results of the many related

experiments using active microwave sensors that the interpretive potential

of microwave imaging radar has not been fully realized. The system para-

meters to be utilized, in addition to the image of the surface, are (a) multi-

wavelengths, (b) multi-polarization, and (c) amplitude calibration. It is

expected that by obtaining measurements utilizing as many 6f the parameters

as possible within a single sensor system, considerable additional-information

can be obtained by conducting the proper analysis of the radar signal. This

analysis will require digital computation.

Clearly, the credibi lity of interpretation of microwave data requires

a good foundation based upon proper ground-truth examples. This paper

presents such an experiment and the results from the first phase of a long-

term program.
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The Radar System

The Environmental Research Institute of Michigan, under a NASA contract

(NAS9-12967) with MSC, Houston, Texas, has instrumented a radar system which

operates simultaneously at wavelengths of 3 cm and 20 cm, and receives both

parallel and cross-polarized signals at both wavelengths. This equipment is

presently installed in a C-46 aircraft. Although the system will transmit only

one polarization during any given data collection pass, it may be configured

to transmit either with horizontal or vertical polarization. Microwave

backscattering data will thus be available to provide four separate images

of a mapped area for each aircraft pass, e.g., X(HH,HV) and L(HH,HV) [31].

The radar signal is then converted into an output image by utilizing optical

data processing techniques [32].

Hardware is available to convert the output map into digital form for

analysis. This consists of an image dissector tube to scan the output image

and an AD (analog-to-digital) converter whose output is recorded on magnetic

digital tape. The software will be designed for each particular data-

processing algorithm. Of primary interest in this work will be the cross-

polarization ratio obtained for the operating wavelengths. These data are

expected to provide the greatest insights into remotely measuring the dielec- -

tric constant of the earth's surface materials, and, through analogy, obtaining

a measure of the moisture content of these materials.

An additional important capability of the new multi-wavelength, multi-

polarization radar is its resolution capability. Resolution as fine as 10

meters in both azimuth and range can be realized. Thus, an integral part of '

the overall objective of the work is to utilize the parameter of fine resolu-

tion in the interpretation of the imagery.
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The microwave signature will consist of measurements of (a) the cross-

polarization ratio Q at both wavelengths, (b) the value of backscattered

energy at the two wavelengths SL and SX, parallel-polarized (HH,VV), (c) the

ratio of thevalues of SL and SX, and (d) the ratio of the-values of Q

obtained at the two wavelengths (P = QX/Q ) . The value of the signature

parameters will be obtained as spatial statistical averages over the area of

interest. Clearly, this will be obtained using the digital techniques

described above.

The Experiment

The questions to be answered utlimately by means of the information ob-

tained during the complete experiment are:

(a) Are the ground truthing techniques used adequate? That is, can the

ground parameters be determined in the field with sufficient accuracy and

consistency?

.(b) Can characteristic signatures of ice and snow types be determined by

using the four signatures proposed (X-band, HH, HV; L-band, HH, HV)?

(c) What is the sensitivity of the radar system, i.e., how much variation

in the electrical properties and geometrical properties can be recognized

with this technique?

(d) Is this type of data applicable to digitization, digital processing,

and automatic interpretation?

(e) Can analog optical techniques be used in data reduction?

The first phase of the experiment emphasized in this paper is concerned

with questions (a) and (b) above. Instruments are available to measure physical

parameters of the ice-snow (e.g., SIPRE Snow Kit). In addition, two instru-

ments have been designed and constructed with which to obtain measures-of the

electrical properties of snow and ice.. These instruments provide a measure

at both frequencies of operation of the radar and at 100 MHz using a simple
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Q-meter designed for this application (Figure 2). The Q-meter will provide

measurements for the control or reference values and also the measurement of

fine structure of the snow and ice (on the order of a wavelength), to determine

roughness characteristics.

As stated in the introduction, there exists a need to determine parti-

cular characteristics of ice and snow for environmental resource studies.

Microwave measurements, both active and passive Ee.g., 33, 34], have been

applied to various aspects of the problem with overall encouraging results.

In order to evaluate the potential of imagery from microwave sensors,

additional imagery is required with (a) pre-flight ground truth for planning,

(b) simultaneous ground truth during the flight, and (c) carefully documented

post-flight ground-truth data from areas of interest identified on-the

imagery. A study of existing radar imagery covering ice and snow regions of

Lake Superiorr(Figure i) has shown several interesting features which have not

been adequately explained using aerial photographs [35]. Several possible

explanations exist for the observed!features. Two particular cases will be

discussed, although it is expected that the experiment will reveal other

interesting facts to add to the information obtainable by proper interpretation

of radar imagery.

Case I:. The roughness of the scattering surface, defined in terms of the

sensor wavelength, determines the magnitude of the backscattered power [36].

The scattering surface is defined as the first discontinuity within the media

along the propagation path. The earth-air boundary is usually the scattering

surface for the radiation transmitted from an imaging radar system, although

there are isolated situations where the scattering surface may not coincide

with the optical surface (e.g., dry soil above wet clays). A measure of the

reflection coefficient [37] at a discontinuity can be obtained from a comparison

of the relative dielectric constant on each side of the discontinuity.
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Recall: (a) that the index of refraction is related to the dielectric

constantE by 7 =l-(for airE = I); (b) the reflection is in excess of 50%

for waves incident normal to a surface slope with £ = 10. The reflection

coefficient is a function of the polarization.. Thus, for values ofE < 4 the

reflection is very small and most of the incident energy is transmitted across

the boundary to be reflected at the next surface discontinuity.

Measurements of the relative dielectric constant of dry snow and ice

[38,39] gives 84 4, so that transmission into the subsurface media can be

expected. An estimate of the propagation loss in a material can be obtained

from a measure of the loss tangent (tan ) of the material. Again, with

reference to measurements made on snow and ice [38], the values of tanS

obtained indicate that penetration on the order of meters for 3 cm wavelength

is realized, with even greater penetration for the 20 cm wavelengths. The

relationship. for the field strength E (i.e., the value of the radiation from

the radar) at a given wavelength A when propagating in a medium with loss

tangent tan a and relative dielectric constant £ is given by

-(1 tan

E(X) = E e
o

Examples of measured values of tan $ and ~ for snow are given in Table I.

Values for xd given in Table I are such that:

E(xd) =Eo d 0 e

Temp X(cm) tan Xd 

-4
-60 C 3 5 x 10 2 10-m.

-3.
30 1I0 2 60 m

Table I. Examples of measured values of tan/ and Ei for snow.

/



1 0

An example of results obtained from one series of ground truth measure-

ments for snow is given in Figure 3. Val~ues of density, temperature, and

dielectric constant are obtained relative to the depth in to the snow pack.

A pit is dug and measurements are made down the shadowed side in order to

minimize heating effects. Loss tangent values were also obtained but not

shown in Figure 3.

A second example of ground truth measurements to be used is given in

Figure 4. A plot of relative dielectric constant contours is shown, obtained

from measurements using the Q-meter described above. The grid is approximately

3 by 3 meters, with samples obtained at 30 cm increments. Values given were

obtained in new snow about 15-20 cms deep over the ice surface of Douglas

Lake, Michigan. Fine scale measurements can be used to determine the rough-

ness of the dielectric variations.

A second instrument is used to provide a measure of the electrical

properties at the frequencies of the imaging radar, i.e., at approximately

1.3 GHz and 9.6 GHz. This-instrument is illustrated schematically in Figure

5. A solid state source is provided at both frequencies. Power is coupled

through slotted lines, one for each frequency, and then radiated through simple

waveguide antennas. The slotted-line sections are used to obtain a measure of

reflected power and phase shift when the antenna apertures are placed on the

surface of snow or ice. The complete measurement system is mounted in a large

metal ground plane, which is supported at each corner to avoid compressing

the snow.

Values of reflected power and phase shift can be used to obtain estimates

of the electrical properties at the radar operating frequencies. Reduction of

the data is realized by obtaining an approximate solution for the radiation

admittance of the waveguide antennas when radiating into a homogeneous or

layered media of particular dielectric values. This method of measuring

electrical properties is similar to techniques used for plasma diagnostics



and electron density measurements, Although the technique is not extremely

accurate, it will provide a reference measure of the electrical properties

at the imaging radar frequencies. It should also be pointed out that

the scattering is a volume effect for the situations considered.

By careful ground-truth studies, it is expected that the various struc-

tures and features of the snow and ice can be correlated with backscatter

characteristics (i.e., the radar image) and used as a basis for interpretation.

Case II: The second case will make use of the cross-polarization ratio Q

as measured by the radar systems in addition to the roughness characteristics.

Ideally, one would want to obtain a measure of Q as a function of angle

as discussed above. This can be accomplished to some degree with an imaging

radar but requires two or more imaging passes over the area of interest to

obtain the multiple look angle. This is illustrated in Figure 6, and is

similar to a scheme for stereo radar [40]. (It is pointed out, as a matter

of interest, that a radar technique is available that can provide multi-angle

looks simultaneously over a fairly wide range of incident angles from normal

to 450 [41]. The field of view of this system is similar to that of infrared

and photographic systems-.)

Values of the cross-polarization ratio are dependent upon (a) the slopes

of the scattering surface, (b) the Fresnel reflection coefficients, and (c)

geometry C42]. The Fresnel coefficients are dependent on the dielectric

constant of the reflecting material. Measures of Q obtained from the radar

measurements when correlated with the radar imagery will "pin point" the area

of interest within the resolution element of the radar. Ground truth will

be obtained, using techniques described above, and correlations made.

The objective of "Case II1" is to obtain the polarization characteristic

signatures of the various ice-snow types and distribution.
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Conclusions and Future Work

The research scheme in toto was outlined above, and it was noted that this

paper is concerned only with parts (a) and (b). That is, can we adequately

conduct our ground truth and, if so, can we detect characteristic signatures

for the various types of ice and snow of interest? By types of ice and snow,

the concern is not only for fresh water ice (e.g., black ice, white ice, slush,

etc.) but also for sea ice (often defined as first year, annual, polar, etc.).

As concerns snow, the variations in density, moisture content, structure, and

depth are all of major importance to persons concerned with predicting stream

runoff from snow covered hydrologic basins. An introductory discussion of

the variables and problems in such studies is available [43].

The scheme of quantification of ground truth for aid in interpreting

imaging-radar remote-sensing data has been briefly discussed. Although it is

recognized that numerous problems will be encountered, and thus demand solutions,

it is felt that to continue to concern ourselves primarily with the theory and

thus avoid the real-world conditions would be to fail to discover insights

into some of the data which are available on radar imagery. It is not difficult

to see the obvious parallels between the type of work reported here (and the

scheme of which it is a larger part) and the development of the interpretation

of aerial photographic and multi-spectral scanner data. What makes radar

,somewhat unique is the fact that it is active. It also views the world at

entirely different wavelengths; these are very long wavelengths which have

the ability to penetrate to some depth below the optical (visible) surface

and thus identify subsurface structures. -

In addition, it is recognized that, with the present rapid rise in the

use of remote sensors and the speed with which they are able to collect data

and present it to the interpreters, -there is a continuing serious problem of a
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data overload which is entirely beyond the capabilities of human manipulation.

Hence, we encounter the problem of machine ana.lysis. This problem has been

and is continually being attacked; in many cases, it has been resolved [44J.

However, prior to determining the ultimate algorithm for machine analysis of

radar imagery, it is obviously necessary to obtain a set of "spectral sig-

natures" from the various surfaces which are of primary interest [e.g., 45].

In this paper, the application of the method for ice and snow has been the major

stress; however, it must be recognized that these surfaces were selected for

rather selfish reasons--they closely approach the isotropic plane which geo-

graphers often discuss. That is, we effectively remove much of the surface

roughness and are thus able to empirically approach the problem of the effect-

of dielectric constant on backscattering of radar energy.
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